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The domain of influence theorem is extended to cover the generalized thermoelasticity of anisotropic
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1. INTRODUCTION
It is remarkable to note that the theory of materials with
voids or vacuous pores was first proposed by Nunziato
and Cowin.1 In this theory the authors introduce additional
degrees of freedom in order to develop the mechanical
behavior of a body in which the skeletal material is elastic
and interstices are void of material. The intended applica-
tions of the theory are to geological materials like rocks
and soil and to manufacture porous materials. The linear
theory of elastic materials with voids was developed by
Cowin and Nunziato in.2 Here the uniqueness and weak
stability of the solutions are also derived. Iesan in3 has
established the equations of thermoelasticity of materials
with voids. An extension of these results to cover the the-
ory of dipolar materials was been made in our studies.4–9

One can find some work on generalized thermoelastic
medium with voids in the literature.10–12 Recently,13–20

variants problems in waves are studied. Other forms are
described for example in the Refs. [21–23].

In the present paper we first consider the basic equa-
tions and conditions of the mixed initial-boundary value
problem in the context of anisotropic thermoelastic mate-
rials with voids. Next we define the domain of influence
Bt of the data at time t associated with the problem. We
adopt the method used in24 and25 to establish a domain
of influence theorem. The main result asserts that in the
context of theory considered, the solutions of the mixed

∗Author to whom correspondence should be addressed.

initial-boundary value problem vanishes outside Bt , for a
finite time t > 0.

2. BASIC EQUATIONS
An anisotropic elastic material is considered. Assume a
such body that occupies a properly regular region B of
three-dimensional Euclidian space R3 bounded by a piece-
wise smooth surface �B and we denote the closure of B
by B̄. We use a fixed system of rectangular Cartesian axes
Oxi, �i = 1�2�3� and adopt the Cartesian tensor notation.
A superposed dot stands for the material time derivative
while a comma followed by a subscript denotes partial
derivatives with respect to the spatial coordinates. Einstein
summation on repeated indices is also used. Also, the spa-
tial argument and the time argument of a function will be
omitted when there is no likelihood of confusion.
The governing equations of the linear theory of

anisotropic elastic material with voids and thermal are
given by Lord and Shulman,26 Ciarletta and Scalia,27

Magana and Quintanilla:28

–Constitutive relations

tij = Cijkmekm+Dijk��k+Bij�−�ij�T + �1Ṫ � (1)

hi =Dkmiekm+Aij��j + fi�−aiT (2)

g =−Bijeij − fi�� i− ��+b�T + �1Ṫ � (3)

	
 = �ijeij +ai��i+b�+aT +a1Ṫ (4)

qi = KijT�j (5)
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where �� = � − �0� is the volume fraction field and �0
is the matrix volume fraction at the reference state. T
is the temperature measured from the absolute tempera-
ture T0�T0 �= 0�. We assume that T0 and �0 are positive
constants.
–Equations of motion are the balance of linear
momentum:

	üi = tij� j +	Fi (6)

–Balance of equilibrated forces

	��̈= hi� i + g+	l (7)

–The energy equation is

	T0
̇ =−qi� i +	r (8)

–The generalized Fourier law is

qi+ �0q̇i =−KijT�j (9)

In the above equations we have used the notations:
Cijkm�Dijk�Aij �Bij � �� fi��ij � b� a� c� ai� kij are the consti-
tutive coefficients; 	 is the density; tij is the symmetric
stress tensor; qi is the heat flux; 
 is the specific entropy;
hi is the equilibrated stress vector; � is the equilibrated
inertia; Fi is the body force vector; r is the heat supply; g
is the intrinsic equilibrated body force and l is the extrinsic
equilibrated body force.
If the material symmetry is of a type that posses a center

of symmetry then Dijk� ai and fi are identically zero.
The general system of equations of motion for

anisotropic materials with voids are obtained by the sub-
stituting the constitutive relation (1) and (2) into Eqs. (6)
and (7)

	üi = Cijkmekm+Bij�−�ij�T + �1Ṫ ��� j +	Fi (10)

	��̈=−Bijeij +
[
Aij��j

]
� i
− ��+b�T + �1Ṫ �+	l (11)

With the help of Eqs. (4), (7) and (9) we get the heat
conduction equation for Lord and Shulman theory9 and
from the Eqs (4), (5) and (7) we obtain the heat conduction
equation for Green and Lindsay theory29 and after that we
write both these equations in combined form as

	C∗�Ṫ + �0T̈ �+T0

(
1+ �0m0

�

�t

)
��ij ėij +b�̇�= KijT� ij

(12)
where C∗ is the specific heat at the constant strain.
For Lord and Shulman (LS) theory m0 = 1, �1 = 0, a1 =

0 and for Green and Lindsay (GL) theory m0 = 0� and
�1 ≥ �0 > 0.
We assume that they are satisfied the following symme-

try relations

Cijmn = Cijnm� Bij = Bji� �ij = �ji� Kij = Kji (13)

The entropy inequality implies that

Kij T� i T� j ≥ 0 (14)

To the above system of field equations we adjoin the fol-
lowing initial conditions

ui�x�0�= u0
i �x�� u̇i�x�0�= u1

i �x�� ��x�0�= �0�x�
(15)

�̇�x�0�= �1�x�� T �x�0�= T 0�x�� x ∈ B̄ (16)

and the following prescribed boundary conditions

ui = ūi on �B1× 0� t0��

ti ≡ tijnj = t̄i on �Bc
1 × 0� t0� (17)

�= �̄ on �B2× 0� t0��

h≡ hini = h̄ on �Bc
2 × 0� t0� (18)

T = T̄ on �B3× 0� t0��

q ≡ qini = q̄ on �Bc
3 × 0� t0� (19)

where ni are the components of the unit outward normal
to �B, t0 is some instant that may be infinite and �B1� �B2

and �B3 with respective complements �Bc
1� �B

c
2 and �Bc

3

are subsets of �B such that

�B1∪ �Bc
1 = �B2 ∪ �Bc

2 = �B3∪ �Bc
3 = �B

�B1 ∩ �Bc
1 = �B2∩ �Bc

2 = �B3 ∩ �Bc
3 = ∅

Also, the above functions u0
i � u

1
i ��

0��1� T 0� ūi� �̄� h̄� T̄
and q̄ are prescribed functions in their domains.
By a solution of the mixed initial boundary value prob-

lem of the theory of anisotropic thermoelastic bodies
with voids in the cylinder �0 = B × 	0� t0
 we mean
an ordered array �ui��� �� which satisfies the system of
Eqs. (10)–(12) for all �x� t� ∈�0, the boundary conditions
(17)–(19) and the initial conditions (15) and (16).

3. MAIN RESULTS
We begin this section with the definition of the domain
of influence. Next, we establish a domain of influence
inequality, which is a counterpart of the inequality estab-
lished in.8 Finally, we shall prove a domain influence the-
orem in the context of anisotropic thermoelastic bodies
with voids. In all what follows, we shall use the following
assumptions on the material properties
(i) 	 > 0� Iij > 0� � > 0� T0 > 0� a > 0;
(ii) Cijmnxijxmn + 2Dijkxijzk + 2Bijxij�+ 2fizi�+ ��2 +
Aijzizj ≥ mod ∗4 cm ≥ ��xijxij + zizi+�2��� > 0� for all
xij� zi���
(iii) Kij
i
j ≥ �
i
i� � > 0� for all 
i.

These assumptions are in agreement with the usual
restrictions imposed in the mechanics of continua. The
assumption, (iii) represents a considerable strengthening of
the consequence (14) of the entropy production inequality.
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For a sufficiently small � > 0, let W��z� be a smooth
non decreasing function, vanishing in �−��0� and equal
to one in ����, that is

W��z�=
{
0� z ∈ �−�� ��

1� z ∈ ����

and for 0 ≤ s ≤ t we define the function G�x� s�

G�x� s�=W�

(
R− r

c
+ t− s

)
(20)

for some fixed positive R and t, where r = x− x0� x0
is an arbitrary fixed point, c is a positive constant to be
determined later.

G�x� s� is a smooth function on B× 0� t�� vanishing
outside � where

�= ⋃
s∈0�t�

Sx0�R+ c�t− s��

The sphere S�x0�R� is defined as

S�x0�R�= �x ∈ R3 � x−x0< R� (21)

Let U�x� s� be the function defined as

U�x� s� = 1
2
	u̇iu̇i+	��̇2+a�T + �1Ṫ �

2+Cijmneij emn

+2Dijkeij��k+2Bijeij�+2fi�� i�

+Aij��i��j + ��2��x� s� (22)

We also define the function K�x� s�

K�x� s�= 1
2
	u̇iu̇i+	��̇2+ eijeij +��i��i+�2��x� s�

(23)
Taking into account the assumptions (i) and (ii) from (22)
and (23) we deduce

K�x� s�≤ U�x� s� (24)

In the next theorem we prove a domain of influence
inequality which is a necessary step to prove the main
result.

Theorem 1. Let �ui���T � be a solution to the system
of Eqs. (10)–(12) with the initial conditions (15), (16)
and the boundary conditions (17)–(19). Then for any R>
0� t > 0 and x0 ∈ B, we have that∫

Dx0�R�
U �x� t�dV + 1

T0

∫ t

0

∫
Dx0�R+c�t−s��

KijT� iT� j dV ds

≤
∫
Dx0�R+ct�

U �x�0�dV

+
∫ t

0

∫
Dx0�R+c�t−s��

	Fiu̇i+ l�̇+ 1
T0

rT � dV ds

+
∫ t

0

∫
�Dx0�R+c�t−s��

t̄iu̇i+ h̄�̇+ 1

T0
q̄T � dV ds (25)

where, we have used the notations

D�x0�R�= �x ∈ B � x−x0< R�

�D�x0�R�= �x ∈ �B � x−x0< R�

Proof. Multiplying the Eq. (10) by Gu̇i, it results

1
2
G

d

dt
�	u̇iu̇i� = 	GFiu̇i+ �Gtij u̇i�� j −G�jtij u̇i

−GCijmnemn+Dijk��k

+Bij�−�ij�T + �1Ṫ ��u̇i� j (26)

Multiplying the Eq. (11) by G�̇, we get

1

2
G

d

dt
�	��̇2�

= 	Gl�̇+ �Ghi�̇�� i −G�ihi�̇

−GDijkeij +Aij��j + fi�−ai�T + �1Ṫ ���̇� i

−GBijeij + fi�� i+ ��−b�T + �1Ṫ ���̇ (27)

At last, multiplying the Eq. (12) by G�T + �1Ṫ �, we are
led to

1
2
G

d

dt
a�T + �1Ṫ �

2�

= 1

T0
Gr �T + �1Ṫ �+

1

	T0
�G �T + �1Ṫ �qi�� i

−G�i�T + �1Ṫ �qi�−
1
	T0

GKijT� iT� j

−G�ijėij +ai�̇� i+b�̇+a�Ṫ + �1T̈ ���T + �1Ṫ � (28)

Adding Eqs. (26)–(28) together, it results

1
2
G

d

dt
	u̇iu̇i+	��̇2+a�T + �1Ṫ �

2�

= 	GFiu̇i+	Gl�̇+ 1
T0

GrT +G

[
tij u̇i+hj�̇+ 1

	T0
Tqj

]

−GCijmnemnėij +Dijk�eij �̇�k+ ėij��k�

+Bij�ėij�+ eij�̇�+Aij��i�̇� j + fi���̇� i+ �̇��i�

+ ���̇+a�T + �1Ṫ ��Ṫ + �1T̈ ��−G�jtij u̇i

−G�ihi�̇− 1
	T0

G�iqiT − 1
	T0

GKij T� i T� j (29)

The relation (29) may be restated as follows

1
2
G

d

dt
�	u̇iu̇i+	��̇2+a�T +�1Ṫ �

2�+Cijmnemneij

+2Dijkeij��k+2Bijeij�+Aij��i ��j+ 2fi��i�+ ��2 �

=	GFiu̇i+	Gl�̇+ 1
T0

GrT +G

(
tij u̇i+hj�̇+ 1

	T0
Tqj

)
� j

−G�jtij u̇i−G�ihi�̇− 1
	T0

G�iqiT − 1
	T0

GKijT�iT�j (30)

J. Comput. Theor. Nanosci. 12, 1–5, 2015 3
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It is easy to see that the relation (30) may be written in
the form

1
2
GU̇+ 1

	T0
KijT�iT�j = G

(
	Fiu̇i+	l�̇+ 1

T0
	rT

)

+G

(
tij u̇i+hj�̇+ 1

	T0
qjT

)
� j

−G�j

(
tij u̇i+hj�̇+ 1

	T0
qjT

)
(31)

Integrating both sides of the Eq. (31) over B× 0� t� and
by using the divergence theorem and the boundary condi-
tions (17)–(19), we deduce

∫
B
GU�x� t�dV + 1

	T0

∫ t

0

∫
B
GKijT� iT� j dV ds

=
∫
B
GU�x�0�dV +

∫ t

0

∫
�B
G

(
t̄i u̇i+ h̄�̇+ 1

	T0
q̄T

)
dAds

+
∫ t

0

∫
B
	G

(
Fiu̇i+ l�̇+ 1

T0
rT

)
dV ds

+
∫ t

0

∫
B
ĠU�x� s�dV ds

−
∫ t

0

∫
B
G�j

(
tij u̇i+hj�̇+ 1

	T0
qjT

)
dV ds (32)

Taking into account the definition (20) of the function
G, we find that∣∣∣∣−G�jtij u̇i−G�ihi�̇− 1

	T0
G�iqiT

∣∣∣∣
=
∣∣∣∣1cW ′

�

xj

r
�tij u̇i+hj�̇+ 1

	T0
qjT �

∣∣∣∣
=
∣∣∣∣1cW ′

�

xj

r

{
Cijmnemn+Dijk��k+Bij�−�ij�T + �1Ṫ ��u̇i

+ �Djmnemn+Ajk��k+ fi�−aiT ��̇

+ 1

	T0
KjiTT� i

}∣∣∣∣ (33)

Where, we have used the notation

W ′
� =

dW�

dr

We now make use of arithmetic-geometric mean inequality

ab ≤ 1
2

(
a2

p2
+b2p2

)
(34)

to the last terms of relation (25) and by choosing suitable
parameters p we can find c such that∣∣∣∣−G�jtij u̇i−G�ihi�̇− 1

T0
G�iqiT

∣∣∣∣ ≤W ′
�K�x� s� (35)

and that∫ t

0

∫
B
ĠU�x� s�dV ds

−
∫ t

0

∫
B

(
G�jtij u̇i+G�ihi�̇+ 1

T0
G�iqiT

)
dV ds

≤
∫ t

0

∫
B
W ′

��x� s�K�x� s�−U�x� s�� dV ds ≤ 0 (36)

By using the inequality (36) in Eq. (32), it results∫
B
GU�x�t�dV + 1

T0

∫ t

0

∫
B
GKijT� iT� j dV ds

≤
∫
B
GU�x�0�dV +

∫ t

0

∫
B
	G�Fiu̇i+l�̇+ 1

	2T0
rT �dV ds

+
∫ t

0

∫
�B
G�t̄iu̇i+ h̄�̇+ 1

	T0
q̄T �dS ds (37)

Letting �→ 0 into relation (37), G tends bounded to the
characteristic function of � and we get the inequality (25).
Based on the above estimations, we can now prove the

main result of our study: the domain of influence theorem.
Let B�t� be the set of points x ∈ B̄ such that:

(1) x ∈ B⇒ u0
i �= 0 oru1

i �= 0 or �0 �= 0 or�1 �= 0 orT 0 �=
0 or ∃� ∈ 0� t� such that Fi�x� �� �= 0 or l�x� �� �= 0 or
r�x� �� �= 0;
(2) x ∈ �B1 ⇒∃� ∈ 0� t� such that ūi�x� �� �= 0,
(3) x ∈ �Bc

1 ⇒∃� ∈ 0� t� such that t̄i�x� �� �= 0,
(4) x ∈ �B2 ⇒∃� ∈ 0� t� such that �̄�x� �� �= 0,
(5) x ∈ �Bc

2 ⇒∃� ∈ 0� t� such that h̄�x� �� �= 0,
(6) x ∈ �B3 ⇒∃� ∈ 0� t� such that T̄ �x� �� �= 0,
(7) x ∈ �Bc

3 ⇒∃� ∈ 0� t� such that q̄�x� �� �= 0.

The domain of influence of the data at instant t is
defined as

Bt = �x0 ∈ B̄ � B�t�∩ S̄�x0� ct� �=�� (38)

where � is the empty set.

Theorem 2. Let �ui���T � be a solution to the system of
Eqs. (10)–(12) with the initial conditions (15), (16) and
the boundary conditions (17)–(19). Then we have

ui = 0��= 0� T = 0� on �B̄\Bt�× 0� t�

Proof. For any x0 ∈ B̄\Bt and � ∈ 0� t�� by using the
inequality (25) with t = � and R= c�t− ��� we obtain∫

Dx0� c�t−���
U �x� ��dV + 1

T0

∫ �

0

∫
Dx0� c�t−s��

KijT� iT� j dV ds

≤
∫
Dx0� ct��

U �x�0�dV

+
∫ �

0

∫
Dx0� c�t−s��

	

(
Fiu̇i+ l�̇+ 1

T0
rT

)
dV ds

+
∫ �

0

∫
�Dx0� c�t−s��

	

(
t̄iu̇i + h̄�̇+ 1

T0
q̄T

)
dS ds (39)

4 J. Comput. Theor. Nanosci. 12, 1–5, 2015
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Since x0 ∈ B̄\Bt� we have x ∈ D�x0� ct�⇒ x � B�t� and
hence ∫

Dx0� ct�
U �x�0�dV = 0 (40)

Moreover, since Dx0� c�t− s��⊆D�x0� ct�� we have

∫ �

0

∫
Dx0� c�t−s��

	

(
Fiu̇i+ l�̇+ 1

T0
rT

)
dV ds = 0 (41)

∫ �

0

∫
Dx0� c�t−s��

(
t̄i u̇i+ h̄�̇+ 1

T0
q̄T

)
dV ds = 0 (42)

Taking into account the assumption (iii) and the relations
(40), (41) and (42) we obtain∫

Dx0� c�t−���
U �x� ��dV ≤ 0 (43)

Using the inequalities (24) and (43), we get∫
Dx0� c�t−���

K�x� ��dV ≤ 0 (44)

Taking into account the definition of K and the inequality
(44) we deduce

u̇i�x0� ��= 0� ��x0� ��= 0� T �x0� ��= 0

for any �x0� �� ∈ �B̄\Bt�× 0� t�.
Finally, since ui�x0�0� = 0 for any x0 ∈ B̄\Bt� we

deduce

ui�x0� ��= 0� ��x0� ��= 0� T �x0� ��= 0

for any �x0� �� ∈ �B̄\Bt�× 0� t� and the proof of Theo-
rem 2 is complete.
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